Медицинский портал - Беременность. Выделения. Климакс. Месячные

Медицинский портал - Беременность. Выделения. Климакс. Месячные

» » Предел функции по определению примеры. Предел последовательности и предел функции по коши

Предел функции по определению примеры. Предел последовательности и предел функции по коши

Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Сегодня рассмотрим подборку новых задач на нахождение предела в точке. Начнем с простых примеров на подстановку значения, чаще всего рассматривают в 11 классе школьной программы по математике.
Далее остановимся и проанализируем пределы с неопределенностями, методы раскрытия неопределенностей, применением первой и второй важных границ и их последствий.
Приведенные примеры полностью не охватят всей темы, но на многие вопросы внесут ясность.

Найти предел функции в точке:

Пример 46. Предел функции в точке определяем подстановкой

Так как знаменатель дроби не превращается в ноль то такую задача под силу решить каждому выпускнику школы.

Пример 47. Имеем долю полиномов, кроме того знаменатель не содержит особенности (не равен нулю).
Еще одна задача, фактически за 11 класс.

Пример 48. Методом подстановки определяем предел функции
Из условия следует, что граница функции равна двум, если переменная стремится к бесконечности.

Пример 49. Прямая подстановка x=2 показывает, что граница в точке имеет особенность {0/0} . Это означает, что и числитель и знаменатель скрыто содержат (x-2) .
Выполняем разложение полиномов на простые множители, а потом сокращаем дробь на указанный множитель (x-2) .
Предел дроби, которая останется, находим методом подстановки.

Пример 50. Предел функции в точке имеет особенность типа {0/0} .
Избавляемся разницы корней методом умножения на сумму корней (сопряженное выражение), полином раскладываем.
Далее, упростив функцию, находим значение предела в единице.

Пример 51. Рассмотрим задачу на сложные пределы.
До сих пор от иррациональности избавлялись методом умножения на сопряженное выражение.
Здесь же, в знаменателе, имеем корень кубический, поэтому нужно использовать формулу разности кубов.
Все остальные преобразования повторяются от условия к условию.
Полином раскладываем на простые множители,
далее сокращаем на множитель, который вносит особенность (0)
и подстановкой x=-3 находим предел функции в точке

Пример 52. Особенность вида {0/0} раскрываем с помощью первого замечательного предела и его последствий.
Сначала разницу синусов распишем согласно тригонометрической формуле
sin(7x)-sin(3x)=2sin(2x)cos(5x).
Далее числитель и знаменатель дроби дополняем выражениями, которые необходимы для выделения важных пределов.
Переходим к произведению пределов и оцениваем вложение каждого множителя.


Здесь использовали первый замечательный предел:

и следствия из него


где a и b – произвольные числа.

Пример 53. Чтобы раскрыть неопределенность при переменной стремящейся к нулю, используем второй замечательный предел.
Чтобы выделить экспоненту, приводим показатель к 2-му замечательному пределу, а все остальное, что останется в предельном переходе, даст степень експоненты.


Здесь использовали следствие из второго замечатеьного предела:

Вычислить предел функции в точке:

Пример 54. Нужно найти предел функции в точке. Простая подстановка значения показывает, что имеем деление нулей.
Для ее раскрытия разложим на простые множители полиномы и выполним сокращение на множитель, который вносит особенность (х+2) .
Однако числитель дальше содержит (x+2) , а это значит, что при x=-2 граница равна нулю.

Пример 55. Имеем дробную функцию - в числителе разница корней, в знаменателе - поленом.
Прямая подстановка дает особенность вида {0/0} .
Переменная стремится к минус единице, а это значит, что следует искать и избавляться особенности вида (x+1) .
Для этого избавляемся иррациональности умножением на сумму корней, а квадратичную функцию раскладываем на простые множители.
После всех сокращений методом подстановки определяем предел функции в точке

Пример 56. С виду подлимитной функции можно ошибочно заключить, что нужно применить первый предел, но вычисления показали, что все гораздо проще.
Сначала распишем сумму синусов в знаменателе sin(2x)+sin(6x)=2sin(4x)*cos(2x).
Далее расписываем tg(2x) , и синус двойного угла sin(4x)=2sin(2x)cos (2x).
Синусы упрощаем и методом подстановки вычисляем предел дроби

Пример 57. Задача на умение использовать вторую замечательный предел:
суть заключается в том, что следует выделить ту часть, которая дает экспоненту.
Остальное, что останется в показателе в предельном переходе даст степень экспоненты.


На этом разбор задач на пределы функций и последовательностей не заканчивается.
В настоящее время подготовлено более 150 готовых ответов к пределам функций, поэтому изучайте и делитесь ссылками на материалы с однокласниками.

Здесь мы рассмотрим определение конечного предела последовательности. Случай последовательности, сходящейся к бесконечности, рассмотрен на странице «Определение бесконечно большой последовательности» .

Определение .
{ x n } , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех натуральных n > N ε выполняется неравенство
| x n - a| < ε .
Предел последовательности обозначается так:
.
Или при .

Преобразуем неравенство:
;
;
.

Открытый интервал (a - ε, a + ε ) называют ε - окрестностью точки a .

Последовательность, у которой существует предел называется сходящейся последовательностью . Также говорят, что последовательность сходится к a . Последовательность, не имеющая предела, называется расходящейся .

Из определения следует, что, если последовательность имеет предел a , что какую бы ε - окрестностью точки a мы не выбрали, за ее пределами может оказаться, лишь конечное число элементов последовательности, или вообще ни одного (пустое множество). А любая ε - окрестность содержит бесконечное число элементов. В самом деле, задав определенное число ε , мы, тем самым имеем число . Так что все элементы последовательности с номерами , по определению, находятся в ε - окрестностью точки a . Первые элементов могут находиться где угодно. То есть за пределами ε - окрестности может находиться не более элементов - то есть конечное число.

Также заметим, что разность вовсе не обязана монотонно стремиться к нулю, то есть все время убывать. Она может стремиться к нулю не монотонно: может то возрастать, то убывать, имея локальные максимумы. Однако эти максимумы, с ростом n , должны стремиться к нулю (возможно тоже не монотонно).

С помощью логических символов существования и всеобщности, определение предела можно записать следующим образом:
(1) .

Определение, что число a не является пределом

Теперь рассмотрим обратное утверждение, что число a не является пределом последовательности.

Число a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.

Запишем это утверждение с помощью логических символов.
(2) .

Утверждение, что число a не является пределом последовательности , означает, что
можно выбрать такую ε - окрестность точки a , за пределами которой будет находиться бесконечное число элементов последовательности .

Рассмотрим пример . Пусть задана последовательность с общим элементом
(3)
Любая окрестность точки содержит бесконечное число элементов. Однако эта точка не является пределом последовательности, поскольку и любая окрестность точки также содержит бесконечное число элементов. Возьмем ε - окрестность точки с ε = 1 . Это будет интервал (-1, +1) . Все элементы, кроме первого, с четными n принадлежат этому интервалу. Но все элементы с нечетными n находятся за пределами этого интервала, поскольку они удовлетворяют неравенству x n > 2 . Поскольку число нечетных элементов бесконечно, то за пределами выбранной окрестности будет находиться бесконечное число элементов. Поэтому точка не является пределом последовательности.

Теперь покажем это, строго придерживаясь утверждения (2). Точка не является пределом последовательности (3), поскольку существует такое , так что, для любого натурального n , существует нечетное , для которого выполняется неравенство
.

Также можно показать, что любая точка a не может являться пределом этой последовательности. Мы всегда можем выбрать такую ε - окрестность точки a , которая не содержит либо точку 0, либо точку 2. И тогда за пределами выбранной окрестности будет находиться бесконечное число элементов последовательности.

Эквивалентное определение

Можно дать эквивалентное определение предела последовательности, если расширить понятие ε - окрестности. Мы получим равносильное определение, если в нем, вместо ε - окрестности, будет фигурировать любая окрестность точки a .

Определение окрестности точки
Окрестностью точки a называется любой открытый интервал, содержащий эту точку. Математически окрестность определяется так: , где ε 1 и ε 2 - произвольные положительные числа.

Тогда определение предела будет следующим.

Эквивалентное определение предела последовательности
Число a называется пределом последовательности , если для любой ее окрестности существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Это определение можно представить и в развернутом виде.

Число a называется пределом последовательности , если для любых положительных чисел и существует такое натуральное число N , зависящее от и , что для всех натуральных выполняются неравенства
.

Доказательство равносильности определений

Докажем, что, представленные выше, два определения предела последовательности равносильны.

    Пусть число a является пределом последовательности согласно первому определению. Это означает, что имеется функция , так что для любого положительного числа ε выполняются неравенства:
    (4) при .

    Покажем, что число a является пределом последовательности и по второму определению. То есть нам нужно показать, что существует такая функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Пусть мы имеем два положительных числа: ε 1 и ε 2 . И пусть ε - наименьшее из них: . Тогда ; ; . Используем это в (5):
    .
    Но неравенства выполняются при . Тогда и неравенства (5) выполняются при .

    То есть мы нашли такую функцию , при которой выполняются неравенства (5) для любых положительных чисел ε 1 и ε 2 .
    Первая часть доказана.

    Теперь пусть число a является пределом последовательности согласно второму определению. Это означает, что имеется функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Покажем, что число a является пределом последовательности и по первому определению. Для этого нужно положить . Тогда при выполняются неравенства:
    .
    Это соответствует первому определению с .
    Равносильность определений доказана.

Примеры

Здесь мы рассмотрим несколько примеров, в которых требуется доказать, что заданное число a является пределом последовательности. При этом нужно задать произвольные положительное число ε и определить функцию N от ε такую, что для всех выполняется неравенство .

Пример 1

Доказать, что .


(1) .
В нашем случае ;
.


.
Воспользуемся свойствами неравенств . Тогда если и , то
.


.
Тогда
при .
Это означает, что число является пределом заданной последовательности:
.

Пример 2

С помощью определения предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Воспользуемся свойствами неравенств . Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
.

Пример 3


.

Вводим обозначения , .
Преобразуем разность:
.
Для натуральных n = 1, 2, 3, ... имеем:
.

Выпишем определение предела последовательности:
(1) .
Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
При этом
при .
Это означает, что число является пределом последовательности :
.

Пример 4

Используя определение предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
Это означает, что число является пределом последовательности :
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Пусть функция у=ƒ (х) определена в некоторой окрестности точки х о, кроме, быть может, самой точки х о.

Сформулируем два, эквивалентных между собой, определения предела функции в точке.

Определение 1 (на «языке последовательностей», или по Гейне).

Число А называется пределом функции у=ƒ(х) в топке x 0 (или при х® х о), если для любой последовательности допустимых значений аргумента x n , n є N (x n ¹ x 0), сходящейся к х о последовательность соответствующих значений функции ƒ(х n), n є N, сходится к числу А

В этом случае пишут
или ƒ(х)->А при х→х о. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке х о, соответствующие значения функции как угодно мало отличаются от числа А.

Определение 2 (на «языке ε», или по Коши).

Число А называется пределом функции в точке х о (или при х→х о), если для любого положительного ε найдется такое положительное число δ, что для все х¹ х о, удовлетворяющих неравенству |х-х о |<δ, выполняется неравенство |ƒ(х)-А|<ε.

Геометрический смысл предела функции:

если для любой ε-окрестности точки А найдется такая δ-окрестность точки х о, что для всех х¹ хо из етой δ-окрестность соответствующие значения функции ƒ(х) лежат в ε-окрестности точки А. Иными словами, точки графика функции у=ƒ(х) лежат внутри полосы шириной 2ε, ограниченной прямыми у=А+ ε , у=А-ε (см. рис. 110). Очевидно, что величина δ зависит от выбора ε, поэтому пишут δ=δ(ε).

<< Пример 16.1

Доказать, что

Решение: Возьмем произвольное ε>0, найдем δ=δ(ε)>0 такое, что для всех х, удовлетворяющих неравенству |х-3| < δ, выполняется неравенство |(2х-1)-5|<ε, т. е. |х-3|<ε.

Взяв δ=ε/2, видим, что для всех х, удовлетворяющих неравенству |х-3|< δ, выполняется неравенство |(2х-1)-5|<ε. Следовательно, lim(2x-1)=5 при х –>3.

<< Пример 16.2

16.2. Односторонние пределы

В определении предела функции считается, что х стремится к x 0 любым способом: оставаясь меньшим, чем x 0 (слева от х 0), большим, чем х о (справа от х о), или колеблясь около точки x 0 .

Бывают случаи, когда способ приближения аргумента х к х о существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.

Число А 1 называется пределом функции у=ƒ(х) слева в точке х о, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х 0 -δ;x o), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х 0 -0 или коротко: ƒ(х о- 0)=А 1 (обозначение Дирихле) (см. рис. 111).

Аналогично определяется предел функции справа, запишем его с помощью символов:

Коротко предел справа обозначают ƒ(х о +0)=А.

Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А 1 =А 2 .

Справедливо и обратное утверждение: если существуют оба предела ƒ(х 0 -0) и ƒ(х 0 +0) и они равны, то существует предел и А=ƒ(х 0 -0).

Если же А 1 ¹ А 2 , то етот придел не существует.

16.3. Предел функции при х ® ∞

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Геометрический смысл этого определения таков: для " ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).

16.4. Бесконечно большая функция (б.б.ф.)

Функция у=ƒ(х) называется бесконечно большой при х→х 0 , если для любого числа М>0 существует число δ=δ(М)>0, что для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняется неравенство |ƒ(х)|>М.

Например, функция у=1/(х-2) есть б.б.ф. при х->2.

Если ƒ(х) стремится к бесконечности при х→х о и принимает лишь положительные значения, то пишут

если лишь отрицательные значения, то

Функция у=ƒ(х), заданная на всей числовой прямой, называется бесконечно большой при х→∞, если для любого числа М>0 найдется такое число N=N(M)>0, что при всех х, удовлетворяющих неравенству |х|>N, выполняется неравенство |ƒ(х)|>М. Коротко:

Например, у=2х есть б.б.ф. при х→∞.

Отметим, что если аргумент х, стремясь к бесконечности, принимает лишь натуральные значения, т. е. хєN, то соответствующая б.б.ф. становится бесконечно большой последовательностью. Например, последовательность v n =n 2 +1, n є N, является бесконечно большой последовательностью. Очевидно, всякая б.б.ф. в окрестности точки х о является неограниченной в этой окрестности. Обратное утверждение неверно: неограниченная функция может и не быть б.б.ф. (Например, у=хsinх.)

Однако, если limƒ(х)=А при х→x 0 , где А - конечное число, то функция ƒ(х) ограничена в окрестности точки х о.

Действительно, из определения предела функции следует, что при х→ х 0 выполняется условие |ƒ(х)-А|<ε. Следовательно, А-ε<ƒ(х)<А+ε при х є (х о -ε; х о +ε), а это и означает, что функция ƒ (х) ограничена.

(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0
2) для любой последовательности { x n } , сходящейся к x 0 :
, элементы которой принадлежат окрестности ,
последовательность { f(x n )} сходится к a :
.

Здесь x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.


.

Второе определение предела функции (по Коши)

Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δ ε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δ ε - окрестности точки x 0 :
,
значения функции f(x) принадлежат ε - окрестности точки a :
.

Точки x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любой окрестности U(a) точки a существует такая проколотая окрестность точки x 0 , что для всех x , принадлежащих проколотой окрестности точки x 0 :
,
значения функции f(x) принадлежат окрестности U(a) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение - ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки ».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f(x) определена на некоторой проколотой окрестности точки x 0 . Точки a и x 0 могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне .
Число a не является пределом функции f(x) в точке x 0 : ,
если существует такая последовательность { x n } , сходящаяся к x 0 :
,
элементы которой принадлежат окрестности ,
что последовательность { f(x n )} не сходится к a :
.
.

По Коши .
Число a не является пределом функции f(x) в точке x 0 :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ - окрестности точки x 0 :
,
что значение функции f(x) не принадлежит ε - окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Функция f(x) = sin(1/x) не имеет предела при x → 0.

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n - натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Теорема доказана.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.