Медицинский портал - Беременность. Выделения. Климакс. Месячные

Медицинский портал - Беременность. Выделения. Климакс. Месячные

» » Анаэробные бактерии список. Анаэробные организмы. Для исследования могут быть использованы

Анаэробные бактерии список. Анаэробные организмы. Для исследования могут быть использованы

Анаэробные организмы

Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O 2:
1. Облигатные аэробные (нуждающиеся в кислороде) бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии - рост пленкой на поверхности из-за восколипидной мембраны.)
2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста).
3. Факультативные бактерии собираются в основном в верхнем ( является наиболее выгодным, чем гликолиз), однако они могут быть найдены на всем протяжении среды, так как от O 2 не зависят.
4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум - малая концентрация кислорода.
5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке.

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования , конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование .

Анаэробы - обширная группа организмов, как микро-, так и макроуровня:

  • анаэробные микроорганизмы - обширная группа прокариотов и некоторые простейшие.
  • макроорганизмы - грибы , водоросли , растения и некоторые животные (класс фораминиферы , большинство гельминтов (класс сосальщики , ленточные черви , круглые черви (например, аскарида)).

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).

Классификация анаэробов

Согласно устоявшейся в микробиологии классификации, различают:

  • Факультативные анаэробы
  • Капнеистические анаэробы и микроаэрофилы
  • Аэротолерантные анаэробы
  • Умеренно-строгие анаэробы
  • Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам .

До 1991 года в микробиологии выделяли класс капнеистических анаэробов , требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus )

Умеренно-строгий анаэробный организм выживает в среде с молекулярным O 2 , однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O 2 .

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода , то он относится к группе аэротолерантных анаэробов . Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O 2 гибнут - например, представители рода бактерий и архей : Bacteroides , Fusobacterium , Butyrivibrio , Methanobacterium ). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O 2 . Фактор, определяющий жизнеспособность организма в среде кислорода - наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O 2 −),перекиси водорода (H 2 O 2), синглетного кислорода (O .), а также молекулярного кислорода (O 2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:

  • супероксиддисмутаза , элиминирующая супероксид-анион(O 2 −) без энергетической выгоды для организма
  • каталаза , элиминирующая перекись водорода (H 2 O 2) без энергетической выгоды для организма
  • цитохром - фермент, отвечающий за перенос электронов от NAD H к O 2 . Этот процесс обеспечивает существенную энергетическую выгоду организму.

Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов.

Анаэробные микроорганизмы могут активно воздействовать на среду, создавая подходящий окислительно-восстановительный потенциал среды (напр. Cl.perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH 2 0 с величины до , ограждая себя восстановительным барьером, другие - аэротолерантные - в процессе жизнедеятельности продуцируют перекись водорода, повышая pH 2 0 .

При этом характерным только для анаэробов является гликолиз , который в зависимости от конечных продуктов реакции разделяют на несколько типов брожению :

  • молочнокислое брожение - род Lactobacillus ,Streptococcus , Bifidobacterium , а также некоторые ткани многоклеточных животных и человека.
  • спиртовое брожение - сахаромицеты , кандида (организмы царства грибов)
  • муравьинокислое - семейство энтеробактерий
  • маслянокислое - некоторые виды клостридий
  • пропионовокислое - пропионобактерии(например, Propionibacterium acnes )
  • брожение с выделением молекулярного водорода - некоторые виды клостридий , ферментация Stickland
  • метановое брожение - например, Methanobacterium

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ . Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н 2 . Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением среды, в то время как расщепление белков и аминокислот - повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

Выделение чистой культуры анаэробов схематично

Культивирование анаэробных организмов в основном является задачей микробиологии.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах - анаэростатах .

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах - добавление содержащих редуцирующие вещества (глюкозу , муравьинокислый натрий и др.), уменьшающие окислительно-восстановительный потенциал.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона - Блера базой является агар-агар с добавлением глюкозы , сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид - аниона , который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии , появляются в глубине агарового столбика.

Среда Китта - Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 - 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak - система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода . Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются - их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Фортнера

Метод Фортнера - посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую - анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) - рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Перетца

Метод Перетца - в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри . Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально - диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса : К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар , лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Плоскирева (бактоагар Ж) - дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные - красные. В составе среды - агар, лактоза, бриллиантовый зелёный , соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород , на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона - Блера ).

Метаболизм анаэробных организмов

Метаболизм анаэробных организмов имеет несколько различных подгрупп:

Анаэробный энергетический обмен в тканях человека и животных

Анаэробное и аэробное энергообразование в тканях человека

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путем, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

3 вида анаэробного пути синтеза АТФ

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм - перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный - синтез (иначе ресинтез ) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
  • Гликолитический - анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием

Наверное, никого уже не удивишь информацией о том, что в любом организме живут бактерии. Все прекрасно знают и то, что это соседство может быть безопасным до поры до времени. Это касается и анаэробных бактерий. Они живут и по возможности неспешно размножаются в организме, выжидая момента, когда можно было бы нанести атаку.

Инфекции, вызываемые анаэробными бактериями

От большинства других микроорганизмов анаэробные бактерии отличаются живучестью. Они способны выживать там, где другие бактерии не протянут и нескольких минут, – в бескислородной среде. Более того, при долгом контакте с чистым воздухом эти микроорганизмы гибнут.

Проще говоря, анаэробные бактерии нашли для себя уникальную лазейку – они поселяются в глубоких ранах и отмирающих тканях, где уровень защиты организма минимальный. Таким образом, микроорганизмы получают возможность беспрепятственно развиваться.

Все виды анаэробных бактерий условно можно поделить на патогенные и условно-патогенные. К числу микроорганизмов, представляющих реальную угрозу для организма, относятся следующие:

  • пептококки;
  • клостридии;
  • пептострептококки;
  • некоторые виды клостридий (анаэробных спорообразующих бактерий, которые встречаются в природе и живут в желудочно-кишечных трактах людей и животных).

Некоторые анаэробные бактерии не просто живут в организме, но и способствуют его нормальному функционированию. Яркий пример – бактероиды. В обычных условиях эти микроорганизмы – обязательная составляющая микрофлоры толстой кишки. А такие разновидности анаэробных бактерий, как фузобактерии и превотеллы обеспечивают здоровую флору полости рта.

В разных организмах анаэробная инфекция проявляется по-разному. Все зависит и от состояния здоровья больного, и от вида поразившей его бактерии. Самая распространенная проблема – инфекции и нагноения глубоких ран. Это яркий пример того, к чему может привести жизнедеятельность анаэробных бактерий. Помимо этого, микроорганизмы могут быть возбудителями таких болезней:

  • некротическая пневмония;
  • перитонит;
  • эндометрит;
  • бартолинит;
  • сальпингит;
  • эпиема;
  • периодонтит;
  • синусит (в том числе хроническая его форма);
  • инфекции нижней челюсти и прочие.

Лечение инфекций, вызванных анаэробными бактериями

Проявления и способы лечения анаэробных инфекций также зависят от возбудителя. Абсцессы и нагноения обыкновенно лечатся с помощью хирургического вмешательства. Отмершие ткани должны быть удалены очень тщательно. После чего рана не менее тщательно дезинфицируется и на протяжении нескольких дней регулярно обрабатывается антисептиками. В противном случае бактерии продолжат размножаться и проникать глубже в организм.

Нужно быть готовым к лечению сильнодействующими препаратами. Зачастую эффективно уничтожить анаэробную, как, в общем-то, и любой другой вид инфекции, без антибиотиков не удается.

Особого лечения требуют анаэробные бактерии во рту. Именно они вызывают неприятный запах изо рта. Чтобы бактерии перестали получать питательные вещества, в свой рацион нужно добавить как можно больше свежих овощей и фруктов (самыми полезными в борьбе с бактериями считаются апельсины и яблоки), а в мясе, фастфуде и прочей вредной пище себя желательно ограничить. И конечно же, не забывайте регулярно чистить зубы. Частички пищи, остающиеся в промежутках между зубами, – благоприятная почва для размножения анаэробных бактерий.

Соблюдая эти несложные правила, можно не только избавиться от неприятного , но и предотвратить появление зубного налета.

Анаэробные инфекции доставляют больному немало хлопот, так как их проявления острые и эстетически неприятные. Провокаторами этой группы заболеваний являются спорообразующие или неспорообразующие микроорганизмы, которые попали в благоприятные для жизнедеятельности условия.

Инфекции, вызванные анаэробными бактериями, развиваются стремительно, могут поражать жизненно важные ткани и органы, поэтому их лечение необходимо начинать сразу после постановки диагноза, чтобы избежать осложнений или летального исхода.

Что это такое?

Анаэробная инфекция – патология, возбудителями которой являются бактерии, способные расти и размножаться при полном отсутствии кислорода или его низком напряжении. Их токсины обладают высокой проникающей способностью и считаются крайне агрессивными.

К данной группе инфекционных заболеваний относятся тяжелые формы патологий, характеризующиеся поражением жизненно важных органов и высоким уровнем смертности. У больных обычно преобладают проявления интоксикационного синдрома над местными клиническими признаками. Данная патология отличается преимущественным поражением соединительнотканных и мышечных волокон.

Причины анаэробной инфекции

Анаэробные бактерии относят к условно-патогенным и входят в состав нормальной микрофлоры слизистых оболочек, пищеварительной и мочеполовой систем и кожи. При условиях, провоцирующих их неконтролируемое размножение, развивается эндогенная анаэробная инфекция. Анаэробные бактерии, обитающие в разлагающихся органических остатках и почве, при попадании в открытые раны вызывают экзогенную анаэробную инфекцию.

Развитию анаэробной инфекции способствуют повреждения тканей, создающие возможность проникновения возбудителя в организм, состояние иммунодефицита, массированное кровотечение, некротические процессы, ишемия, некоторые хронические заболевания. Потенциальную опасность представляют инвазивные манипуляции (удаление зубов, биопсия и под.), хирургические вмешательства. Анаэробные инфекции могут развиваться вследствие загрязнения ран землей или попадания в рану других инородных тел, на фоне травматического и гиповолемического шока, нерациональной антибиотикотерапии, подавляющей развитие нормальной микрофлоры.

По отношению к кислороду анаэробные бактерии подразделяют на факультативные, микроаэрофильные и облигатные. Факультативные анаэробы могут развиваться как в обычных условиях, так и при отсутствии доступа кислорода. К этой группе относятся стафилококки, кишечная палочка, стрептококки, шигеллы и ряд других. Микроаэрофильные бактерии представляют собой промежуточное звено между аэробными и анаэробными, для их жизнедеятельности кислород необходим, но в малых количествах.

Среди облигатных анаэробов различают клостридиальные и неклостридиальные микроорганизмы. Клостридиальные инфекции относятся к экзогенным (внешним). Это ботулизм, газовая гангрена, столбняк, пищевые токсикоинфекции. Представители неклостридиальных анаэробой являются возбудителями эндогенных гнойно-воспалительных процессов, таких как перитонит, абсцессы, сепсис, флегмоны и т.д.

Симптомы

Инкубационный период длится около трех суток. Анаэробная инфекция начинается внезапно. У больных преобладают симптомы общей интоксикации над местным воспалением. Их самочувствие резкое ухудшается до появления локальных симптомов, раны приобретают черную окраску.

Больных лихорадит и знобит, у них возникает выраженная слабость и разбитость, диспепсия, заторможенность, сонливость, апатичность, падает кровяное давление, учащается сердцебиение, синеет носогубный треугольник. Постепенно заторможенность сменяется возбуждением, неспокойствием, спутанностью сознания. У них учащается дыхание и пульс.

Состояние ЖКТ также изменяется: язык у больных сухой, обложен, они испытывают жажду и сухость во рту. Кожа лица бледнеет, приобретает землистый оттенок, глаза западают. Возникает так называемое «маска Гиппократа» - «fades Hippocratica». Пациенты становятся заторможенными или резко возбужденными, апатичными, депрессивными. Они перестают ориентироваться в пространстве и собственных чувствах.

Местные симптомы патологии:

  1. Отек тканей конечности быстро прогрессирует и проявляется ощущениями полноты и распирания конечности.
  2. Сильная, нестерпимая, нарастающая боль распирающего характера, не снимаемая анальгетиками.
  3. Дистальные отделы нижних конечностей становятся малоподвижными и практически нечувствительными.
  4. Гнойно-некротическое воспаление развивается бурно и даже злокачественно. При отсутствии лечения мягкие ткани быстро разрушаются, что делает прогноз патологии неблагоприятным.
  5. Газ в пораженных тканях можно обнаружить с помощью пальпации, перкуссии и прочих диагностических методик. Эмфизема, крепитация мягких тканей, тимпанит, легкий треск, коробочный звук - признаки газовой гангрены.

Течение анаэробной инфекции может быть молниеносным (в течение 1 суток с момента операции или травмы), острым (в течение 3-4 суток), подострым (более 4 суток). Анаэробная инфекция часто сопровождается развитием полиорганной недостаточности (почечной, печеночной, сердечно-легочной), инфекционно-токсического шока, тяжелого сепсиса, являющихся причиной летального исхода.

Диагностика анаэробной инфекции

Перед началом лечения важно определить точно, анаэробный или аэробный микроорганизм вызвал инфекцию, а для этого недостаточно только внешней оценки симптомов. Методы определения инфекционного агента могут быть разными:

  • иммуноферментный анализ крови (эффективность и скорость этого метода высокая, как и цена);
  • рентгенография (этот метод наиболее эффективен при диагностике инфекции костей и суставов);
  • бактериальный посев плевральной жидкости, экссудата, крови или гнойных выделений;
  • окраска по Граму взятых мазков;

Лечение анаэробной инфекции

При анаэробной инфекции комплексный подход к лечению предполагает проведение радикальной хирургической обработки гнойного очага, интенсивной дезинтоксикационной и антибактериальной терапии. Хирургический этап должен быть выполнен как можно раньше – от этого зависит жизнь больного.

Как правило, он заключается в широком рассечении очага поражения с удалением некротизированных тканей, декомпрессии окружающих тканей, открытом дренировании с промыванием полостей и ран растворами антисептиков. Особенности течения анаэробной инфекции нередко требуют проведения повторных некрэктомий, раскрытия гнойных карманов, обработки ран ультразвуком и лазером, озонотерапии и т. д. При обширной деструкции тканей может быть показана ампутация или экзартикуляция конечности.

Важнейшими составляющими лечения анаэробной инфекции являются интенсивная инфузионная терапия и антибиотикотерапия препаратами широкого спектра действия, высокотропными к анаэробам. В рамках комплексного лечения анаэробной инфекции находят свое применение гипербарическая оксигенация, УФОК, экстракорпоральная гемокоррекция (гемосорбция, плазмаферез и др.). При необходимости пациенту вводится антитоксическая противогангренозная сыворотка.

Прогноз

Исход анаэробной инфекции во многом зависит от клинической формы патологического процесса, преморбидного фона, своевременности установления диагноза и начала лечения. Уровень летальности при некоторых формах анаэробной инфекции превышает 20%.

Бактерии появились более 3,5 миллиардов лет назад и были первыми живыми организмами на нашей планете. Именно благодаря аэробным и анаэробным видам бактерий на Земле зародилась жизнь.

Сегодня они являются одной из самых разнообразных в видовом плане и широко распространенной группой прокариотических (не имеющих ядра) организмов. Различное дыхание позволило подразделить их на аэробные и анаэробные, а питание – на гетеротрофные и автотрофные прокариоты.

Видовое разнообразие этих безъядерных одноклеточных организмов огромно: наука описала только 10000 видов, а предположительно существует более миллиона видов бактерий. Их классификация крайне сложна и осуществляется, опираясь на общность следующих признаков и свойств:

  • морфологических – форма, способ передвижения, способность к спорообразованию и другие);
  • физиологических – дыхание кислородом (аэробные) или бескислородный вариант (анаэробные бактерии), по характеру продуктов метаболизма и другие;
  • биохимических;
  • сходство генетических характеристик.

К примеру, морфологическая классификация по внешнему виду подразделяет все бактерии как:

  • палочковидные;
  • извилистые;
  • шаровидные.

Классификация физиологическая по отношению к кислороду делит все прокариоты на:

  • анаэробные – микроорганизмы, дыхание которых не требует наличия свободного кислорода;
  • аэробные – микроорганизмы, нуждающиеся в кислороде для своей жизнедеятельности.

Анаэробные прокариоты

Анаэробные микроорганизмы полностью соответствуют своему названию – приставка ан- отрицает значение слова, аэро – это воздух и б- жизнь. Получается – безвоздушная жизнь, организмы, чье дыхание не нуждается в свободном кислороде.

Бескислородные микроорганизмы делятся на две группы:

  • факультативно-анаэробные – способные существовать как в среде, содержащей кислород, так и при его отсутствии;
  • облигатные микроорганизмы – погибающие при наличии в среде свободного кислорода.

Классификация анаэробных бактерий подразделяет облигатную группу по возможности спорообразования на следующие:

  • спорообразующие клостридии – грамположительные бактерии, большинство из которых подвижны, характеризуются интенсивным метаболизмом и большой изменчивостью;
  • неклостридиальные анаэробы – грамположительные и отрицательные бактерии, которые являются частью микрофлоры человека.

Свойства клостридий

Спорообразующие анаэробные бактерии в большом количестве встречаются в почве и в желудочно-кишечном тракте животных и человека. Среди них известно более 10 видов, которые являются токсичными для человека. Эти бактерии образуют высокоактивные экзотоксины, специфические для каждого вида.

Хотя инфекционным возбудителем может быть один вид анаэробных микроорганизмов, более характерна интоксикация различными микробными ассоциациями:

  • несколькими видами анаэробных бактерий;
  • анаэробных и аэробных микроорганизмов (чаще всего клостридии и стафилококки).

Вполне закономерно в привычной нам кислородной среде, что для получения облигатных аэробов необходимо использовать специальное оборудование и микробиологические среды. По сути, культивирование бескислородных микроорганизмов сводится к созданию условий, при которых доступ воздуха к средам, где производится культивирование прокариотов, полностью перекрыт.

В случае проведения микробиологического анализа на облигатные анаэробы крайне важным являются методы забора пробы и способ транспортировки образца в лабораторию. Так как под действием воздуха облигатные микроорганизмы незамедлительно погибнут, пробу необходимо сохранять либо в герметичном шприце, либо в специализированных средах, предназначенных для подобных транспортировок.

Аэрофильные микроорганизмы

Аэробами называют микроорганизмы, чье дыхание невозможно без свободного кислорода воздуха, а их культивирование проходит на поверхности питательных сред.

По степени зависимости от кислорода все аэробы делят на:

  • облигатные (аэрофилы) – способны развиваться только при высокой концентрации кислорода в воздухе;
  • факультативно-аэробные микроорганизмы, развивающиеся и при пониженном количестве кислорода.

Свойства и особенности аэробов

Аэробные бактерии обитают в почве, воде и воздухе и активно участвуют в круговороте веществ. Дыхание бактерий, которые являются аэробами, осуществляется путем прямого окисления метана (СН 4), водорода (Н 2), азота (N 2), сероводорода (Н 2 S), железа (Fe).

К облигатным аэробным микроорганизмам, которые являются патогенными для человека, относятся туберкулезная палочка, возбудители туляремии и холерный вибрион. Всем им для жизнедеятельности необходимо высокое содержание кислорода. Факультативно-аэробные бактерии, такие как сальмонелла, способны осуществлять дыхание при весьма незначительном количестве кислорода.

Аэробные микроорганизмы, осуществляющие свое дыхание в кислородной атмосфере, способны существовать в весьма широком диапазоне при парциальном давлении от 0,1 до 20 атм.

Выращивание аэробов

Культивирование аэробов подразумевает использование подходящей питательной среды. Необходимыми условиями являются также количественный контроль кислородной атмосферы и создание оптимальных температур.

Дыхание и рост аэробов проявляется в виде образования мути в жидких средах или, в случае плотных сред, в виде образования колоний. В среднем для выращивания аэробов в условиях термостатирования потребуется о 18 до 24 часов.

Общие свойства для аэробов и анаэробов

  1. Все эти прокариоты не имеют выраженного ядра.
  2. Размножаются или почкованием, или делением.
  3. Осуществляя дыхание, в результате окислительного процесса, как аэробные, так и анаэробные организмы разлагают огромные массы органических остатков.
  4. Бактерии являются единственными живыми существами, чье дыхание связывает молекулярный азот в органическое соединение.
  5. Аэробные организмы и анаэробы способны осуществлять дыхание в широком диапазоне температур. Существует классификация, согласно которой безъядерные одноклеточные организмы подразделяют на:
  • психрофильные – условия жизни в районе 0°С;

Грамположительные облигатно-анаэробные

Пропионобактерии, лактобактерии, клостридии, молочнокислые лактобактерии, пептострептококки.

Грамположительные бактерии чаще других являются возбудителями заболеваний. Грамположительными их назвали за способность впитывать синий краситель в клеточную стенку и сохранять фиолетовую окраску при промывке спиртовым раствором по методу Грама. Обозначается такая флора Грам ().

К патогенам человека относят как минимум 6 родов грамположительных микроорганизмов. Кокки - стрептококки, стафилококки - имеют шаровидную форму. Остальные - похожи на палочки. Они в свою очередь делятся на не образующие споры: Corynebacterium, Листерия и образующие споры: Бациллы, Клостридии.

Грамотрицательные облигатно-анаэробные бактерии

Фузобактерии, бактериоиды, порфиромонасы, превотеллы, порфиромонасы, вейлонеллы). Они не окрашиваются в синий цвет во время теста Грама, не образуют споры, но в некоторых случаях являются возбудителями заболеваний и выделяют опасные для жизни токсины.

Грамотрицательные бактерии относят к условно-патогенной флоре, которая активизируется и становится опасной лишь при определенных условиях, например, при резком ослаблении иммунитета.

Заболевания, вызванные грамотрицательными бактериями, сложно лечить, потому что они, имея толстую оболочку, устойчивы к антибиотикам.

Факультативно-анаэробные

Микоплазмы, грибок Candida (молочница), стрептококки, стафилококки, энтеробактерии. Они прекрасно адаптируются, поэтому могут существовать как в бескислородной среде, так и в присутствии кислорода. Некоторые из них, например, кандида, также относится к условно-патогенным микроорганизмам.

Патогенез анаэробных инфекций

Анаэробные инфекции могут обычно характеризоваться следующим образом:

  • Они имеют тенденцию проявляться как локализованные скопления гноя (абсцессы и флегмоны).
  • Уменьшение O 2 и низкий потенциал сокращения окисления, которые преобладают в бессосудистых и некротических тканях — критичны для их выживания,
  • В случае бактериемии она обычно не приводит к диссеминированному внутрисосудистому свертыванию (ДВС).

Некоторые анаэробные бактерии обладают явными вирулентными факторами. Факторы вирулентности В.

fragilis, вероятно, несколько преувеличены благодаря их частому выявлению в клинических образцах, несмотря на их относительную редкость в нормальной флоре.

У этого организма есть капсула полисахаридная, которая, очевидно, стимулирует формирование гнойного очага. Экспериментальная модель интрабдоминального сепсиса показала, что В.

fragilis может вызвать абсцесс самостоятельно, тогда как другим Bactericides spp. требуется синергистическое воздействие другого организма.

Другой фактор вирулентности, мощный эндотоксин, задействован при септическом шоке, связанном с тяжелым фарингитом Fusobacterium.

Заболеваемость и смертность при анаэробном и смешанном бактериальном сепсисе столь же высоки, как и при сепсисе, вызванном отдельным аэробным микроорганизмом.